Color

Maneesh Agrawala

CS 448B: Visualization
Fall 2020

1

Last Time: Visual Explainers

Watch how the measles outbreak spreads when kids get vaccinated - and when they don't

4

6

You Draw It: What Got Better or Worse During Obama’s Presidency

By LARRY BUCHANAN, HAEYOUN PARK and ADAM PEARCE JAN. 15, 2017
Draw your guesses on the charts below to
see if you're as smart as you think you are.

Under President Obama, the unemployment rate ...

Draw the line for the Obama years.

11

Chart Sequences

Multiple Charts in Data Analysis

Multiple Charts in Storytelling

17

Chart Sequence Design

Can we automatically identify sequences to recommend to a human designer?

GraphScape: A Directed Graph Model

Nodes are Vega-Lite specifications. Edges represent edit operations, weighted by estimated transition costs.

19

Constructing the Graph

which chart is easier to follow?

21

Sequence Recommendation

Previously we've discussed approaches for automatic design of a single visualization
(e.g. Mackinlay's APT)

GraphScape supports automated design methods for collections of visualizations.

Plenty of future work to do here!

Summary

Narrative visualizations blend communication via imagery and text with interaction techniques

Specific strategies can be identified by studying what expert designers make

Automating construction of effective explainers is an active area of Visualization research

Announcements

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to TimeSearcher, but for top 100 personalities on Cable TV News.

1. Implement timeboxes interface
2. Submit the application and a short write-up on canvas

Can work alone or in pairs
Due before class on Oct 20, 2020

Grades and Regrades

The final grades will be curved

For regrades, send a private note on Piazza to us and explain why you think a regrade is in order

Final project

Data analysis/explainer or conduct research

- Data anclysis: Analyze dataset in depth \& make a visual explainer
- Research: Pose problem, Implement creative solution

Deliverables

- Data analysis/explainer: Article with multiple interactive visualizations
- Research: Implementation of solution and web-based demo if possible
- Short video ($\mathbf{2} \mathbf{~ m i n ~ m a x}$) demoing and explaining the project

Schedule

- Project proposal: Thu 10/29
- Design Review and Feedback: Tue 11/17 \& Thu 11/19
- Final code and writeup: Sat 11/21 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Color

29

Color in Visualization

Identify, Group, Layer, Highlight

Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte

```
Topics
Color Perception
Color Naming
Using Color in Visualization
```


Color Perception

Physical World, Visual System, Mental Models

Physical World

Light is radiation in range of wavelengths

Light of single wavelength is monochromatic

Most Colors not Monochromatic

Curves describe spectral composition $\Phi(\lambda)$ of stimulus

Rełina

As light enters our retina...

LMS (Long, Middle, Short) Cones
Sensitive to different wavelength

Cone Response

Integrate cone response with input

46

Computing Cone Response

Integrate cone response with input

Opponent processing

LMS are linearly combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Fairchild

51

Opponent processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Experiments:
No reddish green, no bluish yellow Color after images

55

Axes of CIE LAB

Correspond to opponent signals
L* = Luminance
$\mathbf{a}^{*}=$ Red-green contrast
b* $=$ Yellow-blue contrast
Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

Psuedo-Percepłual Models

HLS, HSV, HSB
NOT perceptual models Simple re-notation of RGB

- View along gray axis
- See a hue hexagon

- L or V is grayscale pixel value

Cannoł predicł perceived lightness

Percepłual brightness

HSL Lightness
(Phołoshop)

Percepłual brightness

"In order to use color effectively it is necessary to recognize that it deceives continually."

\author{

- Josef Albers, Interaction of Color
}

Simultaneous Contrasł

The inner and outer thin rings are the physical purple

Bezold Effect

Crispening

Perceived difference depends on background

From Fairchild, Color Appearance Models

Spreading

Adjacent colors blend

Spatial frequency

- The paint chip problem
- Small text, lines, glyphs
- Image colors

Redrawn from Foundations of Vision © Brian Wandell, Stanford University

Color Naming

What color is this?

93

What color is this?

"Yellow"

What color is this?

95

What color is this?

"Blue"

What color is this?

97

What color is this?

Colors according to XKCD...

Color names if	Color names if
you're a girl...	you're a guy...
	Red
Cayenne	
Maroon	Purple
Eggplant	
Grape	
Orchid	
Lavender	
CarnationStrawberry	
Strawberry	
Bubblegum Magenta	
Salmon	
Tangerine \square OrangeCantaloupe	
Banana Yellow	
Lemon	
Honeydew \square Green	
Spring	
Clover	
Fern	
Moss	
Flora	
SpindriftTeal\square	
Sky	Doghouse Diaries
Turquoise	"We take no as an answer."

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay Initial study in 1969
Surveyed speakers from 20 languages Literature from 69 languages

World color survey

103

World color survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips

Results from WCS (South Pacific)

Results from WCS (Mexico)

Language \#98 (Tlapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$

Universal (?) Basic Color Terms

Basic color terms recur across languages

\square \square RedPinkGrey \square
Yellow \square BrownBlack \square Green

OrangeBlue
Purple

Evolution of Basic Color Terms

Proposed universal evolution across
languages

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

600nm
700nm

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Naming affects color perception

Color name boundaries

> Green Blue

Color naming models

[Heer \& Stone]
Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency:
How much do people agree on color name?

Modeled by entropy of p(name | color)

